Recuerda que puedes descargarte algunos de los ejemplos en la pestaña de Código Fuente

martes, 16 de abril de 2013

Ejemplo de Partitioner

En la entrada anterior vimos qué es el Partitioner, ahora toca ver un ejemplo y el código desarrollado para hacer ese ejemplo.

Atención si vais a hacer las pruebas en local ya que no funciona, el modo local sólo tiene un Reducer y por eso es mejor usar por lo menos el modo pseudo distribuido.

En este ejemplo, a partir del fichero scores.txt con la forma:

01-11-2012 Pepe Perez Gonzalez 21
01-11-2012 Ana Lopez Fernandez 14
15-02-2013 Angel Martin Hernandez 3
01-11-2012 Maria Garcia Martinez 11
01-11-2012 Pablo Sanchez Rodriguez 9
01-11-2012 Angel Martin Hernandez 3
15-01-2013 Pepe Perez Gonzalez 17
15-01-2013 Maria Garcia Martinez 3
...

Queremos dividir los datos por año y enviar a cada Reducer las personas que han jugado en ese año. A través de un Partitioner vamos a indicar a qué Reducer va cada registro.

El Driver es parecido a todo lo que hemos visto hasta ahora, lo único que hemos definido que el InputFormat será un KeyValueTextInputFormat (ya que la fecha está separado por una tabulación del resto de la línea, así que este formato reconocerá la entrada).
Y luego añadimos en las configuraciones nuestra clase Partitioner y el número de tareas Reduce que queremos (nuestro fichero sólo tiene datos de 2 años (2012 y 2013), entonces serán 2 tareas Reducer).


public class PersonaScoreDriver {
 public static void main(String[] args) throws Exception {
  Configuration conf = new Configuration();
  Job job = new Job(conf);
  job.setJarByClass(PersonaScoreDriver.class);
  
  job.setJobName("Persona Score");
  
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(Text.class);

  FileInputFormat.setInputPaths(job, new Path(args[0]));
  FileOutputFormat.setOutputPath(job, new Path(args[1]));
  
  job.setInputFormatClass(KeyValueTextInputFormat.class);
  //Establecemos el número de tareas Reduce
  job.setNumReduceTasks(2);
  
  job.setMapperClass(PersonaScoreMapper.class);
  job.setReducerClass(PersonaScoreReducer.class);
  //Indicamos cuál es nuestro partitioner
  job.setPartitionerClass(PersonaScorePartitioner.class);

  boolean success = job.waitForCompletion(true);
  System.exit(success ? 0:1);  
 }
}

En el Mapper lo único que hacemos es sacar el nombre y apellidos del value y emite un par key/value enviando como key la fecha y como value la persona.

public class PersonaScoreMapper extends 
 Mapper<Text, Text, Text, Text> {
 
 Text persona = new Text();
 
 @Override
 public void map(Text key, Text values,
   Context context) throws IOException, InterruptedException {
  
  String[] personaSplit = values.toString().split(" ");
  StringBuilder persBuilder = new StringBuilder();
  // Puede haber personas con un apellido o con dos
  if(personaSplit.length == 3 || personaSplit.length == 4){
   if(personaSplit.length == 3){
    persBuilder.append(personaSplit[0]).append(" ")
     .append(personaSplit[1]);
   }else {
    persBuilder.append(personaSplit[0]).append(" ")
     .append(personaSplit[1]).append(" ")
     .append(personaSplit[2]);
   }
   persona.set(persBuilder.toString());
   context.write(key, persona);
  }
 }
}


La clase Reducer lo único que hace es recoger la key con su lista de values correspondientes, recorrer esa lista y emitir cada par key/value con la fecha y el nombre. Al haber realizado el Partiiioner, un mismo reducer procesará las keys de un mismo año.

public class PersonaScoreReducer extends 
 Reducer<Text, Text, Text, Text> {

 @Override
 public void reduce(Text key, Iterable<Text> values,
   Context context) throws IOException, InterruptedException {
  for (Text value : values) {
   context.write(key, value);
  }  
 }
}


Por último el Partitioner, que lo que hace es devolver un entero indicando cuál es el Reducer al que irán los datos intermedios generados por el Mapper.

public class PersonaScorePartitioner extends Partitioner<Text, Text> {
 
 @Override
 public int getPartition(Text key, Text value, int numPartitions) {
  
  if(key.toString().endsWith("2012")){
   return 0;
  }else{
   return 1;
  }
 }
}


Una vez visto el desarrollo y cómo quedaría el código sólo quedaría exportar las clases como jar (tal y como vimos en esta entrada) al directorio que tengamos preparado para la ejecución de Jobs en modo pseudo-distribuído y lo lanzaríamos (previamente habiendo puesto en HDFS el fichero scorePartMezcla).
También os recuerdo que las clases las podréis encontrar en la sección de Código Fuente

hadoop jar training/jars/EjemploPartitioner.jar PersonaScoreDriver pruebas/scorePartMezcla pruebas/resultados/ejemploPartitioner

Y este debería ser el resultado si listamos el contenido del directorio ejemploPartitioner:

elena:hadoop elena$ hadoop fs -ls pruebas/resultados/ejemploPartitioner
Found 4 items
-rw-r--r--   1 elena supergroup          0 2013-04-02 19:34 /user/elena/pruebas/resultados/ejemploPartitioner/_SUCCESS
drwxr-xr-x   - elena supergroup          0 2013-04-02 19:34 /user/elena/pruebas/resultados/ejemploPartitioner/_logs
-rw-r--r--   1 elena supergroup        562 2013-04-02 19:34 /user/elena/pruebas/resultados/ejemploPartitioner/part-r-00000
-rw-r--r--   1 elena supergroup        684 2013-04-02 19:34 /user/elena/pruebas/resultados/ejemploPartitioner/part-r-00001



Y en cada fichero quedaría el siguiente contenido.

En el part-r-00000 que correspondería al año 2012 y que le habíamos asignado el valor 0:


elena:hadoop elena$ hadoop-1.0.4/bin/hadoop fs -cat pruebas/resultados/ejemploPartitioner/part-r-00000
01-11-2012 Angel Martin Hernandez
01-11-2012 Maria Garcia Martinez
01-11-2012 Ana Lopez Fernandez
01-11-2012 Pablo Sanchez Rodriguez
01-11-2012 Pepe Perez Gonzalez
01-12-2012 Maria Garcia Martinez
01-12-2012 Pepe Perez Gonzalez
01-12-2012 Pablo Sanchez Rodriguez
01-12-2012 Ana Lopez Fernandez
15-11-2012 Pepe Perez Gonzalez
15-11-2012 Maria Garcia Martinez
15-11-2012 John Smith
15-11-2012 Cristina Ruiz Gomez
15-12-2012 John Smith
15-12-2012 Cristina Ruiz Gomez
15-12-2012 Maria Garcia Martinez
15-12-2012 Pepe Perez Gonzalez
15-12-2012 Angel Martin Hernandez




En el part-r-00001 que correspondería al año 2013 y que le habíamos asignado el valor 1:

elena:hadoop elena$ hadoop-1.0.4/bin/hadoop fs -cat pruebas/resultados/ejemploPartitioner/part-r-00001
01-01-2013 Ana Lopez Fernandez
01-01-2013 John Smith
01-01-2013 Pablo Sanchez Rodriguez
01-01-2013 Pepe Perez Gonzalez
01-01-2013 Maria Garcia Martinez
01-01-2013 Angel Martin Hernandez
01-02-2013 Ana Lopez Fernandez
01-02-2013 Cristina Ruiz Gomez
01-02-2013 Maria Garcia Martinez
01-02-2013 Pepe Perez Gonzalez
15-01-2013 Angel Martin Hernandez
15-01-2013 Maria Garcia Martinez
15-01-2013 Pepe Perez Gonzalez
15-01-2013 John Smith
15-01-2013 Pablo Sanchez Rodriguez
15-02-2013 Pepe Perez Gonzalez
15-02-2013 John Smith
15-02-2013 Pablo Sanchez Rodriguez
15-02-2013 Maria Garcia Martinez
15-02-2013 Ana Lopez Fernandez
15-02-2013 Cristina Ruiz Gomez
15-02-2013 Angel Martin Hernandez


sábado, 13 de abril de 2013

Componentes de Hadoop: Partitioner

El partitioner te permite que las Key del mismo valor vayan al mismo Reducer, es decir, divide y distribuye el espacio de claves.

Hadoop tiene un Partitioner por defecto, el HashPartitioner, que a través de su método hashCode() determina a qué partición pertenece una determinada Key y por tanto a qué Reducer va a ser enviado el registro. El número de particiones es igual al número de tareas reduce del job.

A veces, por ciertas razones necesitamos implementar nuestro propio Partitioner para controlar que una serie de Keys vayan al mismo Reducer, es por esta razón que crearíamos nuestra propia clase MyPartitioner que heredaría de la interfaz Partitioner y que implementará el método getPartition.


public class  MyPartitioner<K2, V2> 
    extends Partitioner<KEY, VALUE> implements Configurable {
      public int getPartition(KEY key, VALUE value,  int  numPartitions){}  
}


getPartition recibe una key, un valor y el número de particiones en el que se deben dividir los datos cuyo rango está entre 0 y "numPartitions -1" y devolverá un número entre 0 y numPartitions indicando a qué partición pertenecen esos datos recibidos.

Para configurar un partitioner, basta con añadir en el Driver la línea:

job.setPartitionerClass(MyPartitioner.class);


También nos tenemos que acordar de configurar el número de Reducer al número de particiones que vamos a realizar:

job.setNumReduceTasks(numPartitions);


En la entrada siguiente mostraré un ejemplo concreto del Partitioner.

sábado, 6 de abril de 2013

Output Formats

Los Output Formats son muy parecidos a los tipos vistos en la entrada anterior de los Input Formats.
Pero esta vez la interfaz OutputFormat va a determinar cómo será la salida del Job que vamos a ejecutar.
Para establecer el output format se configura en el Driver a través de:

job.setOutputFormatClass(Tipo.class);

La clase base de salida en Hadoop es FileOutputFormat (que hereda de OutputFormat), y a partir de aquí existen diferentes tipos para poder implementar esa salida, estos son algunos:
  • TextOutputFormat
  • SequenceFileOutputFormat
    • SequenceFileAsBinaryOutputFormat
  • MultipleOutputFormat
El tipo por defecto de salida es el TextOutputFormat, que escribe cada registro (un par key/value) en líneas de texto separadas, y los tipos de los pares key/value pueden ser de cualquier tipo, siempre y cuando implementen el método toString().

También podría ser posible eliminar la key o el value de la salida a través del tipo NullWritable o los dos, que sería mejor definir la salida del Job con el tipo NullOutputFormat.
Si queremos que la salida sea nula, en el Driver definiríamos:
job.setOutputFormatClass(NullOutputFormat.class);

Si sólo queremos eliminar la key o el value se haría con:
job.setOutputKeyClass(NullWritable.class);


o con:
job.setOutputValueClass(NullWritable.class);



Como en los Input Formats, el output también dispone de salidas binarias como el SequenceFileOutputFormat, que como indica, escribe ficheros de tipo Sequence Files (ficheros binarios en los que se escriben pares key/value) y su subclase SequenceFileAsBinaryOutputFormat, que escribe sequence files en los que las key y values están codificados en binario.

En los tipos FileOutputFormat, por defecto se escribe un fichero por cada reducer, que normalmente está predeterminado a uno, pero se puede cambiar ese número de reducers. El nombre de cada fichero es de la forma part-r-00000, part-r-00001..., siendo la última parte el número de reducer. Así que una de las formas de dividir las salidas puede ser usando varios reducers, pero esta no es la solución que nos interesa ver aquí.
La solución sería utilizando la clase MultipleOutputs, se crearía un objeto de este tipo en el reducer y en vez de llamar al write del Context, se haría al write del MultipleOutputs.
También la ventaja de este tipo de Output es que puedes definir el nombre que deseas darle al fichero name-r-00000

Ejemplo de MultipleOutputs:

A partir de nuestro fichero score.txt queremos un programa que separe a los jugadores y sus puntuaciones por fecha agrupados en ficheros separados.
Recordamos que el fichero es de este tipo
 
01-11-2012 Pepe Perez Gonzalez 21
01-11-2012 Ana Lopez Fernandez 14
15-11-2012 John Smith 13
01-12-2012 Pepe Perez Gonzalez 25
...


El Driver es como lo configuramos normalmente, no tiene ninguna configuración especial para hacer el MultipleOutput:
 
public class TestMultipleOutputDriver {
 public static void main(String[] args) throws Exception {
  
  Configuration conf = new Configuration();
  Job job = new Job(conf);
  job.setJarByClass(TestMultipleOutputDriver.class);
  
  job.setJobName("Word Count");
  
  job.setMapperClass(TestMultipleOutputMapper.class);
  job.setReducerClass(TestMultipleOutputReducer.class);
  
  job.setInputFormatClass(KeyValueTextInputFormat.class);

  FileInputFormat.setInputPaths(job, new Path(args[0]));
  FileOutputFormat.setOutputPath(job, new Path(args[1]));
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(Text.class);

  boolean success = job.waitForCompletion(true);
  System.exit(success ? 0:1); 
 }
}



En el Mapper lo único que hacemos es emitir el par key/value que recibimos, ya que no estamos haciendo ningún tratamiento de los datos como tal para este ejemplo.
 
public class TestMultipleOutputMapper extends Mapper<Text, Text, Text, Text> {
 public void map(Text key, Text values, Context context) 
   throws IOException, InterruptedException{
  
  context.write(key, values);
 }
}


En el Reducer creamos un objeto de tipo MultipleOutputs que vamos a inicializar en el método setup y es el que vamos a utilizar para escribir la salida.
name será el prefijo del fichero.
 
public class TestMultipleOutputReducer extends Reducer<Text, Text, Text, Text> {

 private MultipleOutputs<Text, Text> multipleOut;
 
 @Override
 protected void cleanup(Context context) throws IOException,
   InterruptedException {
  multipleOut.close();
 }
 @Override
 protected void setup(Context context) throws IOException,
   InterruptedException {
  multipleOut = new MultipleOutputs<Text, Text>(context);
 }
 @Override
 public void reduce(Text key, Iterable<Text> values, 
           Context context) 
     throws IOException, InterruptedException {
  String name = key.toString().replace("-", "");
  for(Text value:values){
   multipleOut.write( key, value, name);
  //Podría añadir más salidas según mis necesidades
  // a través de cláusulas if, o porque un par key/value
  // traiga diversas informaciones que quiero subdividir
  // en diferentes ficheros
  // if(caso1) multipleOut.write( key, value, name2);
  // multipleOut.write( key, value, name3);
  }
 }
}


En este ejemplo con el MultipleOutputs te obliga que aunque quieras que las salidas sean en distintos ficheros, los pares key/value que emites sean todos del mismo tipo del que has definido la clase MultipleOutputs<Text, Text>, es decir, la key debe ser de tipo Text, y el valor también debe ser de tipo Text.
También es posible emitir múltiples salidas en ficheros diferentes y que cada salida sea con tipos distintos para cada fichero.

En el siguiente ejemplo recibo como entrada un fichero con un listado de papers, en los que cada línea contiene la publicación del paper, los autores y el título del paper de la forma:

paper-id:::author1::author2::...::authorN:::title

journals/cl/SantoNR90:::Michele Di Santo::Libero Nigro::Wilma Russo:::Programmer-Defined Control Abstractions in Modula-2.



Quiero 3 ficheros en la salida de este algoritmo:
- Un fichero paper que contenga: String paper-id, String Title
- Un fichero autor que contenga: Int autor-id (se crea en el algoritmo), String nombre autor
- Un fichero paper/autor que los relacione: String paper-id, Int autor-id

Como vemos necesitamos que una salida sea <Text, Text>, otra salida sea <IntWritable, Text> y la última salida sea <Text, IntWritable>.
Esto se haría añadiendo en el Driver las siguientes líneas, donde se asigna un ID a la salida y de qué tipos son esas salidas:
(Podréis encontrar el código fuente completo en este enlace)
 
MultipleOutputs.addNamedOutput(job, "Autor",  TextOutputFormat.class, 
  IntWritable.class, Text.class);
MultipleOutputs.addNamedOutput(job, "Paper",  TextOutputFormat.class, 
  Text.class, Text.class);
MultipleOutputs.addNamedOutput(job, "PaperAutor",  TextOutputFormat.class, 
  Text.class, IntWritable.class);


Posteriormente, en el Reducer se haría de la forma:

 
for (PaperWritable value : values) {
  
   //Output tabla Autor
   multipleOut.write("Autor", new IntWritable(contador), key);
   
   //Output tabla Paper
   multipleOut.write("Paper", value.getIdPaper(), 
    value.getTituloPaper());
   
   //Output tabla paper/autor
   multipleOut.write("PaperAutor", value.getIdPaper(), 
    new IntWritable(contador));
   
   contador ++;
  }